Astronics Test Systems Inc.

Key Features

- Phase locks to external analog signals: 500 Hz to 10 MHz, 100 mV to 30 V_{ms}
- Sine and square waves up to 100 MHz at amplitudes up to 16 V $_{\rm pk-pk}$ into 50 Ω
- Built-in functions: Trianglex, Sinex, Sinc, Square, Ramp, Pulse, DC, Exponential & Gaussian Pulse
- Linear/log sweep features (arbitrary and DDS) up to 100 MHz
- Ten high-performance modulation modes including AM, FM, PM, PWM, 3D, amplitude/frequency hopping
- VXI replacement for legacy pulse and function generators

Astronics Test Systems 3100M VXI Single/Dual Channel Arbitrary Waveform Generator

The Astronics Test Systems 3100M Waveform Synthesizer Series combines 300 MS/s waveform generation performance, versatility, and compact size into a single-slot VXIbus format.

The 3100M is a greatly improved version of a field-proven instrument ideal for VXI test stimulus generation. It replaces one or two of the popular 3152A Precision PLL Waveform Synthesizers, which are standard on many military and commercial test platforms.

Product Information

Compatibility Mode

The 3100M defaults to its highest performance operational mode, but also can be set to operate as though it were a 3151A+ or 3152A for all modes including (and not limited to) PLL, PM, sequenced mode, trigger delay, and multi-module synchronization. The 3100M provides a front panel interface that is different from that of the 3152A. For legacy designs, please refer to literature for the 3151B and 3152B models for more information.

Modulation Modes

The 3100M allows the modulation of a carrier waveform ranging up to 100 MHz with ten modulation types including AM, FM, PM, FSK, PSK, ASK, frequency hopping, amplitude hopping, 3D modulation (a combination of AM, FM, and PM), and Pulse Width Modulation (PWM).

Modulation sources are all internal except for PM (external or internal with 3D mode) and include sine, square, triangle, ramp, and arbitrary (in some cases). PWM is generated using the included waveform creation software and downloaded to the instrument.

Frequency Sweep

The 3100M sweeps sine (now using Direct Digital Synthesis or DDS), square, or triangle waveforms between any two frequencies up to 100 MHz. Sweep may be performed either up or down and linearly or logarithmically.

11-Digit Frequency Resolution

The 3100M DDS frequency synthesizer (CW mode) provides high frequency resolution, high signal-to-noise ratio (70 dB, typical), and the low phase-noise and jitter needed for telecommunications test applications.

Phase-Lock Mode

The 3100M can phase-lock its output to external analog waveforms. In phase-lock mode, the output automatically locks its frequency to an external signal up to 10 MHz and voltage up to 30 V_{rms}. Phase offset is programmable with 0.01° resolution, and the trigger threshold is programmable with 10 mV resolution.

Waveform Creation Software

The 3100M includes waveform creation software for instrument control and waveform creation that lets you interactively program the generator and import, edit, or create waveforms.

Creation tools are provided to help you design function generator or arbitrary waveforms, pulse waveforms, frequency modulated waveforms, 3D waveforms (user-defined combinations of amplitude, frequency and phase modulation), serial waveforms and more.

Figure 1: Serial Composer

Astronics Test Systems 3100M

Product Information

Highly Configurable Design

The 3100M can be configured with one or two 3152-compatible channels. It can also be configured with a single- or dual-channel amplifier which can be used to increase the output voltage of the waveform generator to 40 $V_{\rm pk-pk}$.

LAN and USB Compatibility

The 3100M models only are fitted with a front panel LAN port and USB host port. The LAN port can be used as an alternate control port independent of a VXI controller and even in the absence of a VXI controller. The USB port can be used to connect with USB-compatible Flash drives.

Arbitrary Waveform Creation

The Waveform Composer feature is useful for creating test stimuli for the 3100M. The Waveform Composer allows you to import wave-forms from a scope, .csv or text file, choose from a variety of pre-defined

Figure 2: LAN and USB Front Panel Connections

waveforms, or to enter an equation. Any waveform can then be manually edited with a variety of tools.

The instrument drivers are capable of loading these waveforms into the instrument while running a test program.

Custom Pulse Waveform Creation

The Pulse Composer feature is used for the creation of arbitrary pulse trains. You

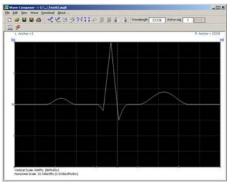


Figure 3: Cardiac Waveform in the Waveform Composer

can specify the characteristics of each pulse in terms of time, amplitude and repetitions.

The ArbConnection™ software then "programs" the instrument to create exactly the pulse that you need, saving you valuable time. In addition, pulses may be programmed by specifying timing parameters directly so that the firmware automatically can build single or double pulses with programmable rise/fall time, width, and delay.

Creating Sequenced Waveforms

The Waveform Studio feature allows

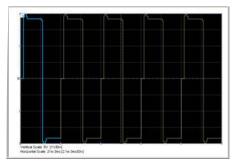


Figure 4: Custom Pulse Waveforms in the Pulse Composer

pre-defined waveforms to be "linked" and looped as one of 10 waveform sequences that may be stored in sequencer memory.

Sequences are useful when complex waveforms are required and portions of the waveform can repeat themselves. They can simplify waveform creation while they preserve waveform memory.

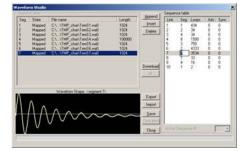


Figure 5: Sequence Definition in Waveform Studio

Combining AM, FM, and PM

The 3D Waveform Composer feature allows you to define any combination of amplitude, frequency, and/or phase modulation into your signal. The composer then calculates the signal for loading into the instrument's 3D modulation memory.

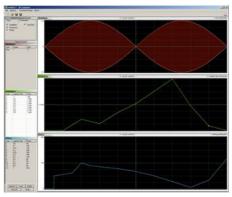


Figure 6: Combined AM, FM, and Phase Modulation in the 3D Composer

Specifications

Note: The Astronics Test Systems policy is one of continuous development and improvement. Consequently, the equipment may vary in detail from the description and specifications in this publication.

Amplitude Characteristics

Amplitude (direct)

- 20 mV to 32 V_{pk-pk} , output open circuit
- 10 mV to 16 $V_{pk-pk}^{m,pm}$, into 50 Ω

Amplitude (3201A/3202A in series)

- 32 mV to 40 V_{pk-pk} , output open circuit
- 16 mV to 20 V_{pk-pk} , into 50 Ω

Resolution

• 4 digits

Accuracy (at 1 kHz into 50 Ω)

- 1.6 V to 16 V_{pk-pk}: ±(1% + 25 mV)
- 160 mV to 1.59 V_{pk-pk}: ±(1% + 5 mV)
- 10 mV to 159.9 mV $_{\rm pk-pk}k:\pm(1\%$ + 2 mV)

DC Offset

- Range: 0 to ±7.995 V
- Resolution: 1 mV
- Accuracy: ±(1% ±1% of Amp. ±5 mV)

Output Impedance

• 50 Ω ±1%

Low-Pass Filters (selectable)

- 25 MHz: Bessel
- 50 MHz: Bessel
- 60 MHz: Elliptic
- 120 MHz: Elliptic

Standby (Output disconnected)

Output On or Off

Output Protection

Short circuit to case (10 s max)

Standard Waveforms

(Sine, Triangle, Square, Pulse, Ramp, Noise, DC.)

Frequency Resolution

11 digits

Accuracy & Stability

Same as frequency standard

Sine

Frequency Range

+ 100 μHz to 100 MHz

Phase Adjustment

- Range: 0 to 359.95°
- Resolution: 0.05°

Power Range (sine raised to a power)

Copyright © 2014 Astronics Test Systems Inc.

• 1 to 9

Total Harmonic Distortion

<0.1% to 100 kHz, STD & CW

Harmonics & Spurious

Frequency	$<5 V_{pk-pk}$	<10 V _{pk-pk}
<100 MHz	-35 dBc	-30 dBc
<10 MHz	-50 dBc	-35 dBc
<1 MHz	-50 dBc	-40 dBc

Flatness

Frequency	$<5 V_{pk-pk}$	<10 V _{pk-pk}
<50 MHz	10%	15%
<10 MHz	5%	5%
<1 MHz	1%	-

Square

Frequency Range

100 µHz to 100 MHz

• 0% to 99.99%

Rise/Fall Time (10%-90%) • <5 ns

Aberration

• <6%

Triangle

Frequency Range

+ 100 μHz to 16 MHz

Phase Adjustment

- Range: 0 to 359.95°
- Resolution: 0.05°

Power Range (triangle raised to a power)

• 1 to 9

Pulse and Ramp Functions

Frequency Range

• 100 µHz to 16 MHz

Delay, Rise/Fall Time, High Time Ranges

 0% to 99.99% of period (each independently)

Gaussian Pulse Time Constant Range • 1 to 200

Sinc Pulse "Zero Crossings" Range • 4 to 100

Exponential Pulse Time Constant Range

• -200 to 200

DC Output Function

Range

949.859.8999; 800.722.2528; atssales@astronics.com; www.astronicstestsystems.com

• -100% to 100% of amplitude

Astronics Test Systems 3100M

Arbitrary Waveforms

Waveform Creation Software

 Included waveform software allows instrument control and creation of custom waveforms and sequences using freehand mode, equations, and built-in functions; or they can be imported from a spreadsheet, scope or text file.

Waveform Memory

- · Legacy Mode: 512 k points
- · Modern Mode: 1 Meg points

Vertical Resolution

- · Legacy Mode: 12-bits
- · Enhanced Mode: 16-bits

Number of Memory Segments

• 1 to 16 k

Minimum Segment Size

- · Legacy Mode: 10 points
- Enhanced Mode: 16 points

Sequenced Waveforms

Operation

 Segments may be linked and repeated in a user-selectable fashion to generate extremely long waveforms. Segments are advanced using either a command or a trigger.

Advance Modes

Automatic Sequence Advance

No trigger required to step from one segment to the next. Sequence is repeated continuously per a pre-programmed sequence table.

Current segment is sampled continuous-

ly until a trigger advances the sequence

to the next programmed segment and

Current segment is sampled the speci-

at the end of the segment. Next trigger

samples the next segment the specified

fied number of repetitions and then idles

Stepped Sequence Advance

sample clock rate.

Single Sequence Advance

repeat count, and so on.

Minimum Segment Duration

Minimum Segment Size in a Sequence

3

Sequencer Steps

Segment Loops

1 to 1 Meg

• 500 ns

10 points

1 to 4096

Specifications continued

Sweep Waveforms

Sweep Range • 10 Hz to 100 MHz

Swept WaveformSine, square or triangle

SpacingLinear or logarithmic

Direction

Up or Down

• 1.4 µs to 40 s

Marker Output

Selectable frequency

Modulated Waveforms

- **Carrier Frequency Range**
- 10 Hz to 100 MHz

Baseline (pre-trigger state)

• DC or Carrier Frequency, selectable

Modulated Waveform • AM, FM: Sine, triangle, square, or ramp

Arbitrary FM: Arbitrary Waveform
• Others: Sine

Run Modes

 Continuous, Triggered, Burst and Gated

Run Mode Advance Source

 Software commands, Front panel TRIG IN, Backplane TTLTrg0-7

Trigger Delay Range

• 0, 100 ns to 20 s

Re-trigger Delay Range

- Range: 100 ns to 20 s
- Resolution: 20 ns

Trigger Jitter

±1 sample clock period

FM

Modulating Frequency Range

10 mHz to 350 kHz

• Up to 50 MHz

Modulating Waveform Sampling Clock (Arbitrary FM Mode)

• 1 S/s to 5 MS/s

Frequency Array Size (Arbitrary FM Mode)

Copyright © 2014 Astronics Test Systems Inc.

• 4 to 20 k frequencies

Marker Output

Programmable at selected frequencies

AM

Modulated WaveformSine, triangle, square, or ramp

• 10 mHz to 1 MHz

AM Depth

• 0% to 100%

FSK, PSK, ASK

Baud Rate Range • FSK, PSK: 1 bit/sec to 10 Mbits/sec • ASK: 1 bit/sec to 2.5 Mbits/sec

Internal Data Bits

• 1 to 4000 Marker Output

Programmable at selected bits

Frequency, Amplitude Hopping

Hopping FunctionFrequency or amplitude

• 1 to 5000

Advance Source • External, internal, backplane

• 200 ns to 20 s

Dwell Time Resolution • 20 ns

Dwell Time Mode • Fixed or variable

Hop Frequency Range • 10 Hz to 100 MHz

Amplitude Hopping Range

• 10 mV to 16 V_{pk-pk}

Amplitude Hopping Resolution • Ampl_{max}/4096

Marker Position

Programmable on a selected hop table index

Sampling Clock

Internal Source Range (worst case)

- Continuous Mode: 100 mS/S to 250 MS/s
- Other Modes: 100 mS/S to 225 MS/s

Internal Source Range (typical 25° C)

- Continuous Mode: 300 MS/s
- Other Modes: 240 MS/s

949.859.8999; 800.722.2528; atssales@astronics.com; www.astronicstestsystems.com

Resolution

11 digits

Accuracy and Stability

Same as reference

Reference Clock

- CLK10: 100 ppm (typical)
- Internal TCXO: 1 ppm, 19° C to 29° C
- Drift: 1 ppm/year

Operating Modes

Normal Mode

 Continuous output of a single waveform segment

Sequenced Mode

 Continuous or triggered output of a sequence of waveform segments (see Sequenced Waveforms)

Sweep Mode

· Continuous output of a swept waveform

Triggered Mode

 One waveform cycle or sequence or sweep is output

Delayed Triggered Mode

 Delays any trigger by up to 2 million waveform points

Gated Mode

 Generator is enabled when an external gate signal is active. The first gated output cycle is synchronous with the active slope of the gate signal. The last output cycle is always completed.

Burst Mode

 A segment is repeated up to 1 million times. In External Burst Mode, each burst begins with a trigger. In Internal Burst Mode, an internal timer is used to repeat the burst at a programmed interval.

Phase Lock Mode

- Phase locks a standard or arbitrary waveform to an external signal to 30 $\rm V_{\rm rms}$

Modulation Mode

• CW or AM, FM, FSK, PSK, ASK, Sweep, Frequency or Amplitude Hopping

Phase Modulation (external)

PM Modulation Rate: 0 to 10 kHz

Counter/Timer

Sources

External

 Measures frequency, period, period averaged, pulse width and events

• Internal: 1 µs to 20 s, programmable

4

Triggering Characteristics

Input Impedance: 10 kΩ

Specifications

continued

Damage Level: 30 V_{ms} Level (Programmable): ±10 V Resolution: 10 mV Sensitivity: 100 mV_{ms}

VXI Backplane: TTLTRG0-7

Maximum Trigger Frequency

- Internal Timer: 50 mHz to 1 MHz
- External: DC to 5 MHz

External Trigger Pulse Width

10 ns, minimum

Trigger Slope

Positive or negative

System Delay (Trig I/P to Waveform O/P)

• 150 ns + 6 clock periods

Trigger Delay (Trig I/P to Waveform O/P)

- Legacy Mode: 10 to 2 Meg points
- Modern Mode: 100 ns to 20 s + system delay
- Resolution: 20 ns
- Accuracy: 150 ns +6 clock period

Re-trigger Delay (Waveform end to re-start)

- Resolution: 20 ns
- Accuracy: 20 ns + 3 clock periods

Sync Output

- Front Panel BNC: TTL
- VXI Backplane: TTLTRG0-7

Sync Pulse

- Width Range: 4 to n-8 clock periods
- Position Range: 0 to n (Where n is the number of points in the selected memory segment.)
- Resolution: 4 points

Sync Sources

- Any point, sequence complete, $\frac{1}{2}$ clock period

PLL Characteristics

Operation

Automatically locks to external signal

PLL Input Characteristics

Same as TRIG IN

External Lock Frequency Range

- STD Waveforms: 500 Hz to 10 MHz
- ARB Waveforms: 500 Hz to 100 MHz divided by # of points in segment

Copyright © 2014 Astronics Test Systems Inc.

Coarse Phase Offset Range

• ±180°

Fine Phase Offset Control

- Range: ±36°
- Resolution: 0.01°

Phase Control Accuracy

2% ±sample clock period

Counter Characteristics

Operation

Counter/timer mode, when enabled, disables waveform generation

Measurement Functions

• Frequency, period, period averaged, pulse width and totalize

Input Characteristics

- Input BNC: Front panel TRIG/PLL IN
- Trigger Level Range: ±10 V
- Sensitivity: 500 mV
- Damage Level: ±12 V
- · Slope: Positive or negative
- Minimum Pulse Width: 10 ns

Frequency, Period Averaged

- Frequency: 10 Hz to 100 MHz
- Period: 10 ns to 50 ms
- Resolution: 7 digits/s

Period, Pulse Width

- Range: 500 ns to 50 ms
- Resolution: 100 ns

Totalize

- Frequency: 20 Hz to 100 MHz
- Event Counting Range: 1 to 1012-1

Gate Time

Frequency: 100 µs to 1 s

Reading Modes

- Repetitive: Continuous measurements when signal is present
- Hold: Single measurement on command
- Gated: Active in Gated Totalize mode

PM Characteristics

Operation

External signal offsets phase. The PM input is operational in PLL mode.

PM Input

949.859.8999; 800.722.2528; atssales@astronics.com; www.astronicstestsystems.com

- Impedance: 100 kΩ, ±5%
- Phase Range: ±130°
- Input Bandwidth: 100 Hz to 10 kHz
- External Lock Range: Same as PLL
- Sensitivity: 20°/V
- Accuracy: ±10%

Astronics Test Systems 3100M

Multiple-Module Synchronization

(Multiple modules can be daisy-chained and synchronized to provide multi-channel systems. Master/slave phase is programmable.)

Initial Skew

<±75 ns + 4 sample periods

Synchronization Modes

- Waveform: STD, ARB, SEQ (auto advance only)
- · Run: Continuous, triggered, gated, burst

Inter-Module Phase Offsets

- · Availability: Continuous run mode only
- Resolution & Accuracy: 20 ns
- Range: <100 ns to 20 s

Synchronization Mechanism

VXI LOCAL BUS

Interface

Compliant)

Front Panel I/O

Outputs (1 per 3152B)

• MAIN (BNC): 50 Ω,

5.7 V_{rms} (28 dBm)

SYNC (BNC): TTL

Inputs (1 per 3152B)

10 kΩ, ±10V

50 Ω, ±5%

I/O Ports

General

• LAN: RJ45

Status Lights

Amber: Link

· Red: Fail

• TRIG/PLL IN (BNC):

Lower SMB Options:

100 kΩ, LVTTL

• USB 2.0: Type A jack

Amber: PLL Locked

Green: Output on

• SCLK IN (SMB): NECL,

1.W1/W4: 10 MHz IN,

2.W3/W5: PM IN, 50Ω

(3152x-compatible)

Also available: 0 dBM sine

Amber: Module accessed on VXIbus

Frequency Range for Operation

• STD Waveforms: 1.5 kHz to 100 MHz • ARB/SEQ Waveforms: 2.5 MS/s to

150 MS/s (subject to backplane limits)

(Single slot, Message Based, VXIbus 3.0

MAIN

TRG/PLL

 \sim

Lower

SMB

Options

5

Specifications

Peak Current & Power Consumption

Total Power: <25 W

	I _{Pm} (A)	I _{Dm} (A)
+24	0.116	0.03
+12	0.07	0.011
+5	1.74	0.014
-2	0	0
-5.2	1.8	0.15
-12	0.06	0.01
-24	0.112	0.01

Software

Native Language

• SCPI 1993.0, IEEE 488.2

Firmware Upgrades

· Stored in Flash using VXI utility

Drivers

• LabVIEW[™], LabWindows[™]/CVI, VXI*plug&play* support for frameworks based on Microsoft Win32[®] application programming interface

Waveform & Control Software

ArbConnection™ 4.2

Shared Waveform Memory

D16/A24/A32 block transfer

3201A/3202A Amplifiers

Input Characteristics

- Channels: 3201A (1), 3202A (2)
- Channel 1: Input SMB, BNC
- Channel 2: Input SMB (2)
- Input Impedance: 50 Ω
- Coupling: DC
- Frequency Range: DC to 15 MHz
- Damage Level: 12 V_{pk-pk} (6 V_{pk})

Output Characteristics

- Channel 1: Output BNC
- Channel 2: Output SMB
- · Coupling: DC
- Protection: Short Circuit, 10 seconds
- · Gain: 10 (other values available)
- · Polarity: Non-inverting
- Output Impedance: 50 Ω (75 Ω and 600 Ω are also available)

Pulse Characteristics

- Transition Time: <22 ns
- Aberration: <7%

Sine Characteristics

- Bandwidth: 15 MHz @ 20 V
- Accuracy: ±(3% of full-scale amplitude range + 25 mV), Square wave at 1 kHz
- THD: 0.2%, 10 Hz to 100 kHz

Harmonics

Frequency	<10 V _{pk-pk}
<15 MHz	-30 dBc
<10 MHz	-38 dBc
<1 MHz	-47 dBc

Flatness

Frequency	<10 V _{pk-pk}
<15 MHz	25%
<7.5 MHz	10%
<1 MHz	5%

Environmentalest Systems 3100M

Temperature

- Operating: 0° C to 55° C
- Storage: -40° C to 71° C

Humidity (non-condensing)

- 11° C to 30° C: 95% ±5%
- 31° C to 40° C: 75% ±5%
- 41° C to 50° C: 45% ±5%

Altitude

- Operating: 10,000 ft
- Storage: 15,000 ft

Vibration (non-operating)

• 2 g at 55 Hz

Shock (non-operating)

• 30 g, 11 ms, half sine pulse

MTBF (MIL-HDBK-217F 25C, GB, GC)

- 3100M-3152B: 76,104 hrs
- 3100M-3152B-3152B: 43,088 hrs

Vibration (non-operating)

• 2 g at 55 Hz

Shock (non-operating)

• 30 g, 11 ms, half sine pulse

MTBF (MIL-HDBK-217F 25C, GB, GC)

- 3100M-3152B: 76,104 hrs
- 3100M-3152B-3152B: 43,088 hrs

Mechanical

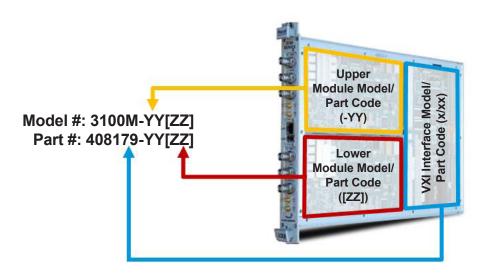
Weight

• 3 lbs 1 oz (1.40 kg)

Cooling (10° C Rise)

• 3.7 l/s @ 0.5 mm H₂O

Racal Instruments™ 3100M


Ordering Information

408179-YY[ZZ] : Racal Instruments™ 3100M-YY[ZZ]

VXI Single/Dual Channel Arbitrary Waveform Generator

Model/Part # Configurator:

Substitute "YY" with the upper internal module code chosen, and substitute "[ZZ]" with the optional lower internal module code.

To create the optional sections of the model/part #, substitute the "-YY" and "[ZZ]" in the part # configurator with the correct Internal Module Code from the table below.

Internal Module Model Code (-YY), ([ZZ])	Internal Module P/N Code (-YY), ([ZZ])	Internal Module Description
W1	W1	1 MB, External Reference Input Port
W3	W3	1 MB, 3152-compatible pinout module
W4	W4	4 MB, External Reference Input Port
W5	W5	4 MB, 3152-compatible pinout module
A1	A1	Amplifier, 20 MHz, 20 V _{pk-pk}
A2	A2	Dual Amplifier, 20 MHz, 20 V _{pk-pk}

3100M-W3

3100M-W3A2

Part Number Ordering Examples:

408179-W3W3	3100M-W3W3: 3100M AWG with a 1 MB 3152B-compatible pinout module (W3) in the upper module position and the same unit in the lower module position (W3)
408179-W4A1	3100M-W4A1: 3100M AWG with a 4 MB 3152B Ext Ref module (W4) in the upper module position and an amplifier (A1) in the lower module position

All trademarks and service marks used in this document are the property of their respective owners.

- Microsoft and Win32 are trademarks of Microsoft Corporation in the United States and/or other countries
- LabVIEW and LabWindows are trademarks of National Instruments in the United States and/or other countries
- ArbConnection is either a trademark or registered trademark
 of Tabor Electronics

