TEST SYSTEMS

RACAL INSTRUMENTS ${ }^{\text {TM }}$

1260-37

SWITCH MODULE

Publication No. 980673-024 Rev. A

Astronics Test Systems Inc.

4 Goodyear, Irvine, CA 92618
Tel: (800) 722-2528, (949) 859-8999; Fax: (949) 859-7139
atsinfo@astronics.com atssales@astronics.com
atshelpdesk@astronics.com http://www.astronicstestsystems.com

[^0]
THANK YOU FOR PURCHASING THIS ASTRONICS TEST SYSTEMS PRODUCT

For this product, or any other Astronics Test Systems product that incorporates software drivers, you may access our web site to verify and/or download the latest driver versions. The web address for driver downloads is:
http://www.astronicstestsystems.com/support/downloads

If you have any questions about software driver downloads or our privacy policy, please contact us at:
atsinfo@astronics.com

WARRANTY STATEMENT

All Astronics Test Systems products are designed to exacting standards and manufactured in full compliance to our AS9100 Quality Management System processes.

This warranty does not apply to defects resulting from any modification(s) of any product or part without Astronics Test Systems express written consent, or misuse of any product or part. The warranty also does not apply to fuses, software, non-rechargeable batteries, damage from battery leakage, or problems arising from normal wear, such as mechanical relay life, or failure to follow instructions.

This warranty is in lieu of all other warranties, expressed or implied, including any implied warranty of merchantability or fitness for a particular use. The remedies provided herein are buyer's sole and exclusive remedies.

For the specific terms of your standard warranty, contact Customer Support. Please have the following information available to facilitate service.

1. Product serial number
2. Product model number
3. Your company and contact information

You may contact Customer Support by:

E-Mail:	atshelpdesk@astronics.com	
Telephone:	+18007223262	(USA)
Fax:	+19498597139	(USA)

RETURN OF PRODUCT

Authorization is required from Astronics Test Systems before you send us your product or sub-assembly for service or calibration. Call or contact Customer Support at 1-800-722-3262 or 1-949-859-8999 or via fax at 1-949-859-7139. We can also be reached at: atshelpdesk@astronics.com.

If the original packing material is unavailable, ship the product or sub-assembly in an ESD shielding bag and use appropriate packing materials to surround and protect the product.

PROPRIETARY NOTICE

This document and the technical data herein disclosed, are proprietary to Astronics Test Systems, and shall not, without express written permission of Astronics Test Systems, be used in whole or in part to solicit quotations from a competitive source or used for manufacture by anyone other than Astronics Test Systems. The information herein has been developed at private expense, and may only be used for operation and maintenance reference purposes or for purposes of engineering evaluation and incorporation into technical specifications and other documents which specify procurement of products from Astronics Test Systems.

TRADEMARKS AND SERVICE MARKS

All trademarks and service marks used in this document are the property of their respective owners.

- Racal Instruments, Talon Instruments, Trig-Tek, ActivATE, Adapt-A-Switch, N-GEN, and PAWS are trademarks of Astronics Test Systems in the United States.

DISCLAIMER

Buyer acknowledges and agrees that it is responsible for the operation of the goods purchased and should ensure that they are used properly and in accordance with this document and any other instructions provided by Seller. Astronics Test Systems products are not specifically designed, manufactured or intended to be used as parts, assemblies or components in planning, construction, maintenance or operation of a nuclear facility, or in life support or safety critical applications in which the failure of the Astronics Test Systems product could create a situation where personal injury or death could occur. Should Buyer purchase Astronics Test Systems product for such unintended application, Buyer shall indemnify and hold Astronics Test Systems, its officers, employees, subsidiaries, affiliates and distributors harmless against all claims arising out of a claim for personal injury or death associated with such unintended use.

FOR YOUR SAFETY

Before undertaking any troubleshooting, maintenance or exploratory procedure, read carefully the WARNINGS and CAUTION notices.

This equipment contains voltage hazardous to human life and safety, and is capable of inflicting personal injury.

If this instrument is to be powered from the AC line (mains) through an autotransformer, ensure the common connector is connected to the neutral (earth pole) of the power supply.

Before operating the unit, ensure the conductor (green wire) is connected to the ground (earth) conductor of the power outlet. Do not use a two-conductor extension cord or a three-prong/two-prong adapter. This will defeat the protective feature of the third conductor in the power cord.

Maintenance and calibration procedures sometimes call for operation of the unit with power applied and protective covers removed. Read the procedures and heed warnings to avoid "live" circuit points.

Before operating this instrument:

1. Ensure the proper fuse is in place for the power source to operate.
2. Ensure all other devices connected to or in proximity to this instrument are properly grounded or connected to the protective third-wire earth ground.

If the instrument:

- fails to operate satisfactorily
- \quad shows visible damage
- has been stored under unfavorable conditions
- has sustained stress

Do not operate until performance is checked by qualified personnel.

EC Declaration of Conformity

We

Astronics Test Systems
4 Goodyear
Irvine, CA 92618
declare under sole responsibility that the
1260-37 Switch Module, P/N 407353
1260-37A Switch Module, P/N 407353-001
They conform to the following Product Specifications:
Safety: EN61010-1:1993+A2:1995
EMC: EN61326:1997+A1:1998

Supplementary Information:

The above specifications are met when the product is installed in an Astronics Test Systems certified mainframe with faceplates installed over all unused slots, as applicable

The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC (modified by 93/68/EEC).

Irvine, CA, April 26, 2002

This page was left intentionally blank.

NOTE FOR SYSTEMS WITH 1260-OPT 01T

The "Module-Specific Syntax" section of this manual shows the command syntax for the 1260-01S Smart Card. If you are using the newer 1260-01T Smart Card, the commands will NOT work as shown.

Consult the 1260-01T Manual for a description of the commands which may be used with the 126001T Smart Card.

The channel numbers described in this manual are valid for the 1260-01T. The channel numbers continue to be used for the 1260-01T.

The syntax of the commands which use channel numbers has changed for those cards controlled by the 1260-01T.

The new syntax used to close a channel is:
CLOSE (@ <module address> (<channel>))
For example, with for a relay module whose <module address> is set to 7 , closing <channel> 0 is performed with the command:

CLOSE (@ 7 (0))
Using the older 1260-01S, the command would be (as shown in this manual):

CLOSE 7.0

Many other command syntax differences exist. Please consult chapter 2 of the 1260-01T manual for a description of the commands which are available for the 1260-01T.

Control Information for the 1260-37A

The following information describes the control-register-to-relay-channel mapping for a 1260-37A Relay Module. This information may be used to control a 1260-37A when using a 1260-01T in the register-based mode of operation.

The table below shows the mapping between logical channels used to operate the relay module in message-based mode and the bits within the Control Registers which may be used to operate the channel in register-based mode.

Each Control Register is located 2 addresses from the previous Control Register. This is shown in Table 2-2 of the 1260-01T manual. Control Register 0 is located at the "Base A24 Address" for the module. Consult the "Register-Based Operation" Section of Chapter 2 of the 1260-01T manual for a description of calculating control register addresses.

Each channel between 0 and 23 (inclusive) is operated by setting or clearing two bits in parallel. One bit in each of two different Control Registers must be set to operate these channels as a 4wire MUX.

Channels 100 through 139 are each operated by a single bit of a single Control Register.

Channel	Control Register	Control Bit
0	0 and 3	0
1	0 and 3	1
2	0 and 3	2
3	0 and 3	3
4	0 and 3	4
5	0 and 3	5
6	0 and 3	6
7	0 and 3	7
8	1 and 4	0
9	1 and 4	1
10	1 and 4	2
11	1 and 4	3
12	1 and 4	4
13	1 and 4	5
14	1 and 4	6
15	1 and 4	7
16	2 and 5	0
17	2 and 5	1
18	2 and 5	2
19	2 and 5	3
20	2 and 5	4
21	2 and 5	5
22	2 and 5	6
23	2 and 5	7
100	6	0
101	6	1
102	6	2
103	6	3
104	6	4
105	6	5
106	6	6
107	6	7
108	7	0
109	7	1

Channel	Control Register	Control Bit
110	7	2
111	7	3
112	7	4
113	7	5
114	7	6
115	7	7
116	8	0
117	8	1
118	8	2
119	8	3
120	8	4
121	8	5
122	8	6
123	8	7
124	9	0
125	9	1
126	9	2
127	9	3
128	9	4
129	9	5
130	9	6
131	9	7
132	10	0
133	10	1
134	10	2
135	10	3
136	10	4
137	10	5
138	10	6
139	10	7

Control Information for the 1260-37B

The following information describes the control-register-to-relay-channel mapping for a 1260-37B Relay Module. This information may be used to control a 1260-37B when using a 1260-01T in the register-based mode of operation.

Each relay on this module is controlled by setting or clearing a single bit. Control Registers on the module operate 8 channels simultaneously. There are eight control bits per Control Register. Setting the bit to a 1 closes the relay; setting the bit to a 0 opens the relay.

The table below shows the mapping between logical channels used to operate the relay module in message-based mode and the bits within the Control Registers which may be used to operate the channel in register-based mode.

Each Control Register is located 2 addresses from the previous Control Register. This is shown in Table 2-2 of the 1260-01T manual. Control Register 0 is located at the "Base A24 Address" for the module. Consult the "Register-Based Operation" Section of Chapter 2 of the 1260-01T manual for a description of calculating control register addresses.

Channel	Control Register	Control Bit
0	0	0
1	0	1
2	0	2
3	0	3
4	0	4
5	0	5
6	0	6
7	0	7
8	1	0
9	1	1
10	1	2
11	1	3
12	1	4
13	1	5
14	1	6
15	1	7
16	2	0
17	2	1
18	2	2
19	2	3
20	2	4
21	2	5
22	2	6
23	2	7
24	3	0
25	3	1
26	3	2
27	3	3
28	3	4
29	3	5
30	3	6
31	3	7
32	4	0
33	4	1
34	4	2
35	4	3
36	4	4
37	4	5

Channel	Control Register	Control Bit
38	4	6
39	4	7
40	5	0
41	5	1
42	5	2
43	5	3
44	5	4
45	5	5
46	5	6
47	5	7
48	12	0
100	6	0
101	6	1
102	6	2
103	6	3
104	6	4
105	6	5
106	6	6
107	6	7
108	7	0
109	7	1
110	7	2
111	7	3
112	7	4
113	7	5
114	7	6
115	7	7
116	8	0
117	8	1
118	8	2
119	8	3
120	8	4
121	8	5
122	8	6
123	8	7
124	9	0
125	9	1
126	9	2
127	9	3
128	9	4
129	9	5
130	9	6
131	9	7
132	10	0
133	10	1
134	10	2
135	10	3
136	10	4
137	10	5
138	10	6
139	10	7

This page was left intentionally blank.

Table of Contents

Chapter 1 1-1
MODULE SPECIFICATION 1-1
1260-37 Module Specification 1-1
Specifications 1-2
Ordering Information 1-4
Safety 1-4
Chapter 2 2-1
INSTALLATION INSTRUCTIONS 2-1
Unpacking and Inspection 2-1
Option 01 Installation 2-1
Module Installation 2-2
1260-37 ID Byte 2-2
Configuration Jumpers 2-2
Analog Bus 2-3
Chapter 3 3-1
MODULE SPECIFIC SYNTAX 3-1
1260-37 Module Specific Syntax 3-1
Syntax 3-1
CLOSE and OPEN Command 3-2
PSETUP Command 3-2
PDATAOUT Command 3-3
Operation In Single-Wire Mode 3-3
Chapter 4 4-1
OPTIONAL HARNESS ASSEMBLIES 4-1

List of Figures

Figure 1-1, 1260-37 Switching Card..1-1

Figure 3-1, 1260-37 Multiplexer/Scanner Circuit Block Diagram ...3-7
Figure 3-2, 1260-37 40-Channel SPDT Circuit Block Diagram..3-8
Figure 3-3, 1260-37 Pin Connections...3-9

List of Tables

Table 2-1, 1260-37 Multiplexer/Scanner Circuit Jumper Installation .. 2-3

Table 3-1, 1260-37 Multiplexer/Scanner Circuit Channel Closure 3-4

DOCUMENT CHANGE HISTORY

Revision	Date	Description of Change
		Revised per EO 30004. Revised format to current standards. Company name revised throughout manual. Manual now revision letter controlled. Added Document Change History Page v. Back of cover sheet. Revised Warranty Statement, Return of Product, Proprietary Notice and Disclaimer to current standards. (Chap2-1) Unpacking and inspection. Revise to current standards. Removed Reshipment Instructions in (Chap. 2-1) and removed (Chap 5). Information. Now appears in first 2 sheets behind cover sheet. Updated table of contents to reflect changes made. . Added company name to footer opposite page no's i thru vi.
$01 / 11 / 10$		(

This page was left intentionally blank.

Chapter 1

MODULE SPECIFICATION

1260-37 Module Specification

The 1260-37 switch module consists of two switch circuits; a 1 x 48 Signal Multiplexer/Scanner and a 40-Channel SPDT Switch. The Signal Multiplexer circuit switches two lines per channel, and has the capability of being configured as one 1×48 multiplexer, two 1×24 multiplexers, four 1×12 multiplexers, or eight 1×6 multiplexers. The signal mulitplexer configuration is user selectable, but is supplied from the factory in the one 1×48 twowire mode. In addition, the multiplexer may be configured as a one-wire 1×96 multiplexer. A block diagram of this circuit is shown in Figure 3-1. The 40 channel SPDT switch circuit provides 40 independent channels of switching. Each channel features one common line that connects to either a normally open or normally closed position. A block diagram of this circuit is shown in Figure 3-2.

Figure 1-1, 1260-37 Switching Card

Specifications

1×48 Signal Multiplexer/Scanner

Switch Configurations	Four-wire mode (any configuration) Two-wire mode (any configuration)
Maximum Switchable Voltage (Terminal-Terminal or Terminal-Ch	250 VDC, 250 VAC RMS ssis)
Maximum Switchable Current1A, DC or AC RMS (Per Channel)	
Maximum Switchable Power (Per Channel)	$30 \mathrm{WDC}, 62.5 \mathrm{VA} \mathrm{AC}$
Path Resistance	$<0.30 \Omega$ (1×6 configuration) $<0.50 \Omega$ (1×48 configuration)
Isolation Hi-Lo	$>7.5 \times 10^{8} \Omega$
Capacitance	
Open Channel Channel-Chassis HI-LO	< 50pf (1x 6 configuration) < 50pf (1x 6 configuration) <300pf (1x 48 configuration) < 80pf (1x 6 configuration) <400pf (1x 48 configuration)
Bandwidth (50Ω Termination)	$>35 \mathrm{MHz}$ (1×6 configuration) $>15 \mathrm{MHz}$ (1 x 48 configuration)
Insertion Loss (50 Termination) 1×6 Configuration	$\begin{aligned} & <.1 \mathrm{~dB} \text { to } 100 \mathrm{kHz} \\ & <.5 \mathrm{~dB} \text { to } 1 \mathrm{MHz} \\ & <1 \mathrm{~dB} \text { to } 10 \mathrm{MHz} \end{aligned}$
Insertion Loss (50 Termination) 1×48 Configuration	$<.1 \mathrm{~dB}$ to 100 kHz $<1.0 \mathrm{~dB}$ to 1 MHz $<1.0 \mathrm{~dB}$ to 10 MHz
Crosstalk (50 Termination)	$<-40 \mathrm{~dB}$ to 100 kHz $<-35 \mathrm{~dB}$ to 1 MHz $<-15 \mathrm{~dB}$ to 10 MHz
Isolation	>45 dB to 100 kHz $>40 \mathrm{~dB}$ to 1 MHz $>33 \mathrm{~dB}$ to 10 MHz
Switching Time	2 mS

40 Channel SPDT Switch

Maximum Switchable Voltage 250 VDC, 250 VAC RMS (Terminal-Terminal or Terminal Chassis)

Maximum Switchable Current1 A,DC or AC RMS (Per Channel)

Maximum Switchable Power 30 WDC, 62.5 VA AC (Per Channel)
Path Resistance
DC Isolation COM
Bandwidth
(50Ω termination)

Insertion Loss
(50Ω termination)

Crosstalk
(50Ω termination)

Isolation
(50Ω termination)

Switching Time
Cooling Requirements
Airflow
Backpressure
Power Requirements (Imp)

Weight

User Connector
$<0.5 \Omega$
$>2 \times 10^{9} \Omega$
$>35 \mathrm{MHz}$
$<.1 \mathrm{~dB}$ to 100 kHz
$<.5 \mathrm{~dB}$ to 1 MHz
$<1 \mathrm{~dB}$ to 10 MHz (typical)
$<-40 \mathrm{~dB}$ to 100 kHz
$<-35 \mathrm{~dB}$ to 1 MHz
$<-20 \mathrm{~dB}$ to 10 MHz
$>40 \mathrm{~dB}$ to 100 kHz
$>35 \mathrm{~dB}$ to 1 MHz
$>28 \mathrm{~dB}$ to 10 MHz
2 mS

4 liters/sec
0.5 mm of Hg
+5 V without Option $0 \mathrm{l}=$ 400mA
+5 V with Option $\mathrm{Ol}=2.5 \mathrm{~A}$
$+24 \mathrm{~V}=10 \mathrm{~mA}$ per relay
1.26 kg (2.771bs) without Option 01
1.41 kg (3.IIlbs) with Option OI

64-Pin (2 Row)
IDC Quick Disconnect*

Minimum Firmware Revision

$$
\begin{array}{ll}
\text { Option OI } & 23.1
\end{array}
$$

*A crimp connector kit is also available for this module (P/N 404975-003). A strain relief option can be ordered separately for this crimp connector kit.

Ordering
 Information

Safety

Model Number	Description	Part Number
1260-37	1×48 Signal Multiplexer/	407353
	Scanner, 40-Channel,	
	SPDT Switch	

Refer to the "FOR YOUR SAFETY" page preceding the Table of Contents. Follow all NOTES, CAUTIONS and WARNINGS to ensure personal safety and prevent damage to the instrument.

Chapter 2

INSTALLATION INSTRUCTIONS

Unpacking and Inspection

Option 01 Installation

1. Remove the 1260-37 module and inspect it for damage. If any damage is apparent, inform the carrier immediately. Retain shipping carton and packing material for the carrier's inspection.
2. Verify that the pieces in the package you received contain the correct 1260-37 module option and the 1260-37 Users Manual. Notify Customer Support if the module appears damaged in any way. Do not attempt to install a damaged module into a VXI chassis.
3. The 1260-37 module is shipped in an anti-static bag to prevent electrostatic damage to the module. Do not remove the module from the anti-static bag unless it is in a static-controlled area.

Installation of the Option 01 to the 1260-37 is described in the Installation Section of the 1260 Series VXIbus Switching Cards Manual.

Module
Installation

1260-37 ID Byte

Configuration Jumpers

Installation of the 1260-37 Switching Module into a VXIbus mainframe, including the setting of DIP switches, is described in the Installation Section of the 1260 Series VXIbus Switching Cards Manual. Configuration of the motherboard PCB and setting DIP switches S1-5 and S1-6 are described in the following sections.

There are two configurations for the 1260-37 Signal Multiplexer/Scanner circuit; two-wire and four-wire. Each configuration responds to different sets of values for <channel number>. The set of values the 1260-37 responds to is controlled by switch 5 on DIP switch 51 on the main PCB. The switch settings that correspond to the two configurations are as follows:

Configuration	S1 Switch 5	S1 Switch 6
Four-wire	Off	Off
Two-wire	On	Off

The 1260-37 Scanner/Multiplexer circuit is a user configurable switching circuit. It may be configured to any one of eight different configurations as shown below. The 1260-37 SPDT switch circuit is not configurable.

1) Eight 1×6 two-wire scanner/multiplexers
2) Four 1×6 four-wire scanner/multiplexers
3) Four 1×12 two-wire scanner/multiplexers
4) Two 1×12 four-wire scanner/multiplexers
5) Two 1×24 two-wire scanner/multiplexers
6) One 1×24 four-wire scanner/multiplexers
7) One 1×48 two-wire scanner/multiplexers
8) One 1×96 one wire scanner/multiplexer

The 1260-37 Scanner/Multiplexer circuit is shipped from the factory in the 1×48 two-wire configuration. Table 2-1 gives the information necessary to configure the module into the other possible configurations. Note that the Scanner/ Multiplexer circuit front panel connections are at J200 and J202 while the SPDT switch connections are at J201 and J203.

Table 2-1, 1260-37 Multiplexer/Scanner Circuit Jumper Installation
An X indicates a jumper is to be installed. An (X) indicates the jumper is optional, depending on whether access to the analog bus is required. A blank indicates no jumper is to be installed.

	$\begin{aligned} & \text { 8(1X6) } \\ & \text { 2-Wire } \end{aligned}$	$\begin{aligned} & \text { 4(1X6) } \\ & \text { 4-Wire } \end{aligned}$	$\begin{aligned} & \text { 4(1x12) } \\ & \text { 2-Wire } \end{aligned}$	$\begin{aligned} & \text { 2(1X12) } \\ & \text { 4-Wire } \end{aligned}$	$\begin{aligned} & \text { 2(1X24) } \\ & \text { 2-Wire } \end{aligned}$	$\begin{aligned} & \text { 1(1X24) } \\ & \text { 4-Wire } \end{aligned}$	$\begin{gathered} \text { 1(1X48) } \\ \text { 2-Wire } \end{gathered}$	$\begin{gathered} \text { 1(1X96) } \\ \text { 1-Wire } \end{gathered}$
W2A, B W3A,B W4A,B			X	x	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{gathered} (X) \\ x \\ x \end{gathered}$	$\begin{gathered} (X) \\ x \\ x \end{gathered}$
W5A,B W6A,B			x	X	X	X	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$
W8A,B W9A,B W10A,B			x	x	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$
W11A, B								X

Analog Bus

In two of the above configurations, the 1260-37 Scanner/Multiplexer circuit may be configured to access the analog bus (refer to Figure 3-1). The analog bus allows expansion for the configuration of larger scanner/multiplexers than the module may achieve alone. This is accomplished by providing access to a common bus channel which may be daisy chained to other multiplexer modules via the front panel

To connect the module to the analog bus, install jumpers W2A and W2B on the motherboard PCB.

This page was left intentionally blank.

Chapter 3

MODULE SPECIFIC SYNTAX

1260-37 Module Specific Syntax

Syntax

The Module Specific Syntax for the 1260-37 Signal Multiplexer/SPDT Switch is required in the use of the OPEN and CLOSE commands. It will also appear in data output by the Master in response to the PDATAOUT and PSETUP commands.

The Module Specific Syntax for the 1260-37 module is as follows:
<module address> .<channel>[;<module address> <channel>]
where <module address> is the switch card address. <channel number> is the relay to be closed to connect an input to the output.

Note that Channels remain closed until opened by an OPEN or RESET command, VXI hard or soft reset, or power-off.

NOTE:

The <module address> used here is not the VXIbus defined logical address of the 1260 Series Master. It is particular to the 1260 Series and describes the switching module in relation to the Master. This address corresponds to the binary value of the switch setting of SW1 on the switching module PCB.

The range of values for <channel> is:

Multiplexer/Scanner:	One-wire	$00-48$
	Two-wire	$00-47$
	Four-wire	$00-23$.
	SPDT Switch	$100-139$

Note that the SPDT circuit channel number is preceded by a "1" to distinguish it from the Multiplexer/Scanner circuit. For the SPDT circuit, Channels 00 to 39 correspond to channels 100 to 139 in the command syntax.

The actual mapping of channel number to connector pins for the Scanner/Multiplexer circuit is given in Table 3-1, and for the SPDT circuit in Figure 3-2. Figure 3-3 shows the physical location of the 64 -pin (2 Row) connector pins. Note that the Scanner /Multiplexer circuit front panel connections are at J200 and J202 while the SPDT switch connections are at J201 and J203.

CLOSE and OPEN Command

The module specific syntax for the CLOSE command is the same as for the OPEN command. Examples are shown below.

For switch card address 7, channels $00,19,117,123$:
CLOSE 7.00;7.19;7.I 17;7.123
OPEN 7.00;7.19;7.I 17;7.123

The PSETUP command causes the specified module setup to be transmitted to the VXI Controller. The syntax used is:

PSETUP <module address>[;<module address>]
[;<module address>]
where <module address> is the switch card address.
The responses to the PSETUP command for the 1260-37 Scanner/Multiplexer / SPDT is as follows:

1260-37: Two-wire
<module address>. 1260-37, Two-wire Scanner/Multiplexer /
SPDT Module
<module address>.B BM
<module address>.END
1260-37: Four-wire
<module address>. 1260-37, Four-wire Scanner/Multiplexer /
SPDT Module
<module address>.BBM
<module address> END

The response to the PSETUP command consists of a header on the first line. The header describes the model number, followed by a four-wire or two-wire to indicate the module setup. The next line designates the setup mode for scanning which, by default, is Break-Before-Make (BBM). The last line containing the "END" characters denotes that there is no more information to report

PDATAOUT Command

The PDATAOUT command causes the specified module to transmit the state of the relays CLOSED within the switch module to the 1260 Controller. The syntax used is:

```
PDATAOUT <module address> [ <module address>]
    [;<module address>]
```

The responses to the PDATAOUT command is as follows:
1260-37: Two-wire
<module address>.1260-37 Two-wire Scanner/Multiplexer /
SPDT Module
<module address> .<channel>[,<channel>] [,<channe |>] <module address>.END

1260-37 Four-wire
<module address>.1260-37, Four-wire Scanner/Multiplexer / SPDT Module
<module address>.<channel>[,<channel>] [,<channel>] <module address>.END

The response to the PDATAOUT command consists of a header on the first line as with the PSETUP response. The next line details the channels currently closed on the module, and is blank when no channels are closed. Again, the last line is denoted by the "END" string of characters.

Operation In Single-Wire Mode

The 1260-37 is delivered with all jumpers installed (refer to Table 2-1). In this configuration, the module is a 1×48 two-wire multiplexer (refer to Figure 3-1).

Channel 48 is a single pole, double throw (SPDT) relay with its common channel connected to J202, pin B2. The normally closed (NC) contact is connected to the "LO" side of the two-wire common bus, and the normally open (NO) contact is connected to the "HI" side of the common bus.

The common output of channel 48 is the single channel of the $96 x$ I multiplexer, and the 48 HI and 48 LO connections make up the 96 channels. By closing the appropriate channel ($0-47$) and opening or closing channel 48 , a $96 \times \mathrm{I}$ multiplexer is achieved.

Table 3-1, 1260-37 Multiplexer/Scanner Circuit Channel Closure
Channel interconnect for 1, 2 and 4-wire modes.

1-wire mode:

<channel>
(channel 48 open)
0 thru 47
(channel 48 closed)
0 thru 47
<channel> output
always J202-132
always J202-132
<channel> input
(see 2-wire mode channels 0-47 input pins b-side of channel)
(see 2-wire mode channels 0-47 input pins a-side of channel)

Thus, a one 1×96 1-wire mode is acheived.

2-wire mode:

<channel>	$\begin{array}{ccc} \hline \text { <channel> output pins } \\ \text { A } & \text { / } \\ (\mathrm{HI}) & (\mathrm{LO}) \\ \hline \end{array}$	$\begin{array}{cc} \hline \text { <channel> input pins } \\ \text { A } & \text { b } \\ (\mathrm{HI}) & (\mathrm{LO}) \end{array}$
0	J200- A30 / B30	J200- A29 / B29
1	J200- A30 / B30	J200- A28 / B28
2	J200- A30 / B30	J200- A27 / B27
3	J200- A30 / B30	J200- A26 / B26
4	J200- A30 / B30	J200- A25 / B25
5	J200- A30 / B30	J200- A24 / B24
6	J200- A23 / B23	J200- A22 / B22
7	J200- A23 / B23	J200- A21 / B21
8	J200- A23 / B23	J200- A20 / B20
9	J200- A23 / B23	J200- A19 / B19
10	J200- A23 / B23	J200- A18 / B18
11	J200- A23 / B23	J200- A17 / B17
12	J200- A16 / B16	J200- A15 / B15
13	J200- A16 / B16	J200- A14 / B14
14	J200- A16 / B16	J200- A13 / B13
15	J200- A16 / B16	J200- A12 / B12
16	J200- A16 / B16	J200- A11 / B11
17	J200- A16 / B16	J200- A10 / B10
18	J200- A9 / B9	J200- A8 / B8

<channel>	$\begin{gathered} \hline \text { <channel> output pins } \\ \text { A } \quad / c \\ (\mathrm{HI}) \\ \text { (LO) } \end{gathered}$	$\begin{array}{cc} \hline \text { <channel> input pins } \\ \text { A } / \text { b } \\ (\mathrm{HI}) & (\mathrm{LO}) \end{array}$
19	J200- A9 / B9	J200- A7 / B7
20	J200- A9 / B9	J200- A6 / B6
21	J200- A9 / B9	J200- A5 / B5
22	J200- A9 / B9	J200- A4 / B4
23	J200- A9 / B9	J200- A3 / B3
24	J202- A30 / B30	J202- A29 / B29
25	J202- A30 / B30	J202- A28 / B28
26	J202- A30 / B30	J202- A27 / B27
27	J202- A30 / B30	J202- A26 / B26
28	J202- A30 / B30	J202- A25 / B25
29	J202- A30 / B30	J202- A24 / B24
30	J202- A23 / B23	J202- A22 / B22
31	J202- A23 / B23	J202- A21 / B21
32	J202- A23 / B23	J202- A20 / B20
33	J202- A23 / B23	J202- A19 / B19
34	J202- A23 / B23	J202- A18 / B18
35	J202- A23 / B23	J202- A17 / B17
36	J202- A16 / B16	J202- A15 / B15
37	J202- A16 / B16	J202- A14 / B14
38	J202- A16 / B16	J202- A13 / B13
39	J202- A16 / B16	J202- A12 / B12
40	J202- A16 / B16	J202- A11 / B11
41	J202- A16 / B16	J202- A10 / B10
42	J202- A9 / B9	J202- A8 / B8
43	J202- A9 / B9	J202- A7 / B7
44	J202- A9 / B9	J202- A6 / B6
45	J202- A9 / B9	J202- A5 / B5
46	J202- A9 / B9	J202- A4 / B4
47	J202- A9 / B9	J202- A3 / B3

48 (not used in 2-wire mode)

4-wire mode:

<channel>	refer to the following 2-wire channels for the input/output pins
0	0, 24
1	1, 25
2	2, 26
3	3, 27
4	4, 28
5	5, 29
6	6, 30
7	7, 31
8	8,32
9	9,33
10	10, 34
11	11, 35
12	12, 36
13	13, 37
14	14, 38
15	15, 39
16	16, 40
17	17, 41
18	18, 42
19	19, 43
20	20, 44
21	21, 45
22	22, 46
23	23, 47

48 (not used in 4-wire mode)

Figure 3-1, 1260-37 Multiplexer/Scanner Circuit Block Diagram

Figure 3-2, 1260-37 40-Channel SPDT Circuit Block Diagram

Figure 3-3, 1260-37 Pin Connections

This page was left intentionally blank.

Chapter 4
OPTIONAL HARNESS ASSEMBLIES

The following harness assemblies are used to connect 126037 to Freedom Series Test Receiver Interfaces.

Each harness documentation consists of an assembly drawing, parts list, system wire list and wire list.
$407437 \quad$ Virginia Panel, Inc. Series VP90 Interface Harness
$407438 \quad$ TTI Testron, Inc. Interface Harness

For more information on the complete line of Test Receiver Interface solutions, contact our Customer Support Department.

This page was left intentionally blank.

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN	REFERENCE
	$\begin{aligned} & \text { BLK AA } \\ & (\mathrm{J} 100) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & (\mathbf{J} 200, \mathrm{~J} 201) \\ & \hline \end{aligned}$	CABLE	407437		SYSTEM WIRE LIST
	$\begin{aligned} & \text { BLK AA } \\ & (\mathrm{J} 101) \end{aligned}$	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & (\mathbf{J} 201, \sqrt{202}) \end{aligned}$	CABLE	407437		
-	$\begin{aligned} & \text { BLK AA } \\ & \text { (J102) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & \text { (J203). } \end{aligned}$	CABLE	407437		

This system wirelist serves as a template for incorporating this hamess assembly into the overall system wirelist. It does not in any way affect the fabrication of this hamess assembly.

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN		
141	J101-52	J202-A13	BLK	407259	41.5"	CH38A	
142	J101-84	J202-A14	WHT	407259	41.5"	CH37A	
143	J101-21	J202-A15	GRY	407259	41.5"	CH36A	
144	J101-54	J202-A16	VIO	407259	41.5"	COM7A	
145	J101-86	J202-A17	BLU	407259	41.5"	CH35A	
146	J101-23	J202-A18	GRN	407259	41.5"	CH34A	
147	J101-56	J202-A19	YEL	407259	41.5"	CH33A	
148	J101-88	J202-A20	ORN	407259	41.5"	CH32A	
149	J101-25	J202-A21	RED	407259	41.5"	CH31A	
150	J101-58	J202-A22	BRN	407259	41.5"	CH30A	
151	J101-90	J202-A23	BLK	407259	41.5"	COM6A	
152	J101-27	J202-A24	WHT	407259	41.5"	CH29A	
153	J101-60	J202-A25	GRY	407259	41.5"	CH28A	
154	J101-92	J202-A26	VIO	407259	41.5"	CH27A	
155	J101-29	J202-A27	BLU	407259	41.5"	CH26A	
156	J101-62	J202-A28	GRN	407259	41.5"	CH25A	
157	J101-94	J202-A29	YEL	407259	41.5"	CH24A	
158	J101-31	J202-A30	ORN	407259	41.5"	COM5A	
159	J101-64	J202-A31	RED	407259	41.5"	SIGNAL	
160	J101-96	J202-A32	BRN	407259	41.5"	SIGNAL	
161	J101-75	J202-B1	TAN	407259	41.5"	SIGNAL	
162	J101-12	J202-B2	TAN	407259	41.5"	SIGNAL	
163	J101-45	J202-B3	TAN	407259	41.5"	CH47A	
164	J101-77	J202-B4	TAN	407259	41.5"	CH46B	
165	J101-14	J202-B5	TAN	407259	41.5"	CH45B	
166	J101-47	J202-B6	TAN	407259	41.5"	CH44B	
167	J101-79	J202-B7	TAN	407259	41.5"	CH43B	
168	J101-16	J202-B8	TAN	407259	41.5"	CH42B	
169	J101-49	J202-B9	TAN	407259	41.5"	COM8B	
170	J101-81	J202-B10	TAN	407259	41.5"	CH41B	
171	J101-18	J202-B11	TAN	407259	41.5"	CH40B	
172	J101-51	J202-B12	TAN	407259	41.5"	CH39B	
173	J101-83	J202-B13	TAN	407259	41.5"	CH38B	
174	J101-20	J202-B14	TAN	407259	41.5"	CH37B	
175	J101-53	J202-B15	TAN	407259	41.5"	CH36B	
176	J101-85	J202-B16	TAN	407259	41.5"	COM7B	
177	J101-22	J202-B17	TAN	407259	41.5"	CH35B	
178	J101-55	J202-B18	TAN	407259	41.5"	CH34B	
179	J101-87	J202-B19	TAN	407259	41.5"	CH33B	
180	J101-24	J202-B20	TAN	407259	41.5"	CH32B	
181	J101-57	J202-B21	TAN	407259	41.5"	CH31B	
182	J101-89	J202-B22	TAN	407259	41.5"	CH30B	
183	J101-26	J202-B23	TAN	407259	41.5"	COM6B	
184	J101-59	J202-B24	TAN	407259	41.5"	CH29B	
185	J101-91	J202-B25	TAN	407259	41.5"	CH28B	
186	J101-28	J202-B26	TAN	407259	41.5"	CH27B	
187	J101-61	J202-B27	TAN	407259	41.5"	CH26B	
188	J101-93	J202-B28	TAN	407259	41.5"	CH25B	
DOCUMENT TITLE			SIZE ${ }^{\text {a }}$ CODE NO.		DOCUMENT NO.		REV
HARNESS ASSEMBLY, 1260-37, VP90			A	21793	407437		B
			DRN		SHEET 6 of 8		

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN	REFERENCE	
189	J101-30	J202-B29	TAN	407259	41.5"	$\begin{aligned} & \text { CH24B } \\ & \text { COM5B } \end{aligned}$	
190	J101-63	J202-B30	TAN	407259	41.5"		
191	J101-95	J202-B31	TAN	407259	41.5"	SIGNAL GND SIGNAL GND	
192	J101-32	J202-B32	TAN	407259	41.5"		
193	J102-33	J203-A1	RED	407259	41.5"	$\begin{aligned} & \text { COM39 } \\ & \text { NO38 } \end{aligned}$	
194	J102-34	J203-A2	BRN	407259	41.5"		
195	J102-35	J203-A3	BLK	407259	41.5"	$\begin{aligned} & \mathrm{NC} 38 \\ & \text { COM37 } \\ & \hline \end{aligned}$	
196	J102-36	J203-A4	WHT	407259	41.5"		
197	J102-37	J203-A5	GRY	407259	41.5"		
198	J102-38	J203-A6	VIO	407259	41.5"	NC36	
199	J102-39	J203-A7	BLU	407259	41.5"	COM35 NO34	
200	J102-40	J203-A8	GRN	407259	41.5"		
201	J102-41	J203-A9	YEL	407259	41.5"	$\begin{aligned} & \text { NC34 } \\ & \text { COM33 } \end{aligned}$	
202	J102-42	J203-A10	ORN	407259	41.5"		
203	J102-43	J203-A11	RED	407259	41.5"	$\begin{aligned} & \hline \text { NO32 } \\ & \text { NC32 } \end{aligned}$	
204.	J102-44	J203-A12	BRN	407259	41.5"		
205	J102-45	J203-A13	BLK	407259	41.5"	$\begin{aligned} & \text { COM31 } \\ & \text { NO30 } \\ & \hline \end{aligned}$	
206	J102-46	J203-A14	WHT	407259	41.5"		
207	J102-47	J203-A15	GRY	407259	41.5"	NC30COM29	
208	J102-48	J203-A16	VIO	407259	41.5"		
209	J102-49	J203-A17	BLU	407259	41.5"	$\begin{aligned} & \text { NO28 } \\ & \text { NC28 } \\ & \hline \end{aligned}$	
210	J102-50	J203-A18	GRN	407259	41.5"		
211	J102-51	J203-A19	YEL	407259	41.5"	COM27 NO26	
212	J102-52	J203-A20	ORN	407259	41.5"		
213	J102-53	J203-A21	RED	407259	41.5"	NC26	
214	J102-54	J203-A22	BRN	407259	41.5"	COM25	
215	J102-55	J203-A23	BLK	407259	41.5"	NO24NC24	
216	J102-56	J203-A24	WHT	407259	41.5"		
217	J102-57	J203-A25	GRY	407259	41.5"	COM23	
218	J102-58	J203-A26	VIO	407259	41.5"	NO22	
219	J102-59	J203-A27	BLU	407259	41.5"	$\begin{aligned} & \mathrm{NC22} \\ & \mathrm{COM} 21 \end{aligned}$	
220	J102-60	J203-A28	GRN	407259	41.5"		
221	J102-61	J203-A29	YEL	407259	41.5"	NO20	
222	J102-62	J203-A30	ORN	407259	41.5"	NC20	
223	J102-63	J203-A31	RED	407259	41.5"	$\begin{aligned} & \text { NO CONNECTION } \\ & \text { CHASSIS GND } \\ & \hline \end{aligned}$	
224	J102-64	J203-A32	BRN	407259	41.5"		
225	J102-1	J203-B1	TAN	407259	41.5"	NO39 -	
226	J102-2	J203-B2	TAN	407259	41.5"		
227	J102-3	J203-B3	TAN	407259	41.5"	COM38	
228	J102-4	J203-B4	TAN	407259	41.5"	NO37	
229	J102-5	J203-B5	TAN	407259	41.5"	$\begin{aligned} & \hline \text { NC37 } \\ & \text { COM36 } \end{aligned}$	
230	J102-6	J203-B6	TAN	407259	41.5*'		
231	J102-7	J203-B7	TAN	407259	41.5"	NO35	
232	J102-8	J203-B8	TAN	407259	41.5"	NC35	
233	J102-9	J203-B9	TAN	407259	41.5"	$\begin{aligned} & \text { COM34 } \\ & \text { NO33 } \\ & \hline \end{aligned}$	
234	J102-10	J203-B10	TAN	407259	41.5"		
DOCUMENT TITLE			SIZE	CODE NO.	DOCUMENT NO.		REV
HARNESS ASSEMBLY, 1260-37, VP90			A	21793	407437		B
			DRN			SHEET 7 of 8	

ENGINEERING WIRE LIST

ENGINEERING PARTS LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN	REFERENCE			
49	J103-9	J200-B17	TAN	407260	41.5"	$\begin{aligned} & \hline \mathrm{CH11B} \\ & \mathrm{CH} 10 \mathrm{~B} \\ & \hline \end{aligned}$			
50	J102-10	J200-B18	TAN	407260	41.5"				
51	J102-8	J200-B19	TAN	407260	41.5"	$\begin{aligned} & \text { CH9B } \\ & \text { CH8B } \end{aligned}$			
52	J102-6	J200-B20	TAN	407260	41.5"				
53	J102-4	J200-B21	TAN	407260	41.5"	CH7B			
54	J102-2	J200-B22	TAN	407260	41.5"	CH6B			
55	J101-1	J200-B23	TAN	407260	41.5"	COM2B			
56	J101-3	J200-B24	TAN	407260	41.5"	CH5B			
57	J101-5	J200-B25	TAN	407260	41.5"	$\begin{aligned} & \hline \text { CH4B } \\ & \text { CH3B } \end{aligned}$			
58	J101-7	J200-B26	TAN	407260	41.5 ${ }^{\text {²}}$				
59	J101-9	J200-B27	TAN	407260	41.5"				
60	J100-10	J200-B28	TAN	407260	41.5"	$\begin{aligned} & \text { CH2B } \\ & \text { CH1B } \\ & \hline \end{aligned}$			
61	J100-8	J200-B29	TAN	407260	41.5"	$\begin{aligned} & \hline \text { CH0B } \\ & \text { COM1B } \end{aligned}$			
62	J100-6	J200-B30	TAN	407260	41.5"				
63	J100-4	J200-B31	TAN	407260	41.5"	J200-A31			
64	J100-2	J200-B32	TAN	407260	41.5"	ABUS1B			
65	J113-3	J201-A1	RED	407260	41.5"	COM19 NO18			
66	J113-1	J201-A2	BRN	407260	41.5"				
67	5112-2	J201-A3	BLK	407260	41.5"	NC18			
68	J112-4	J201-A4	WHT	407260	41.5"	COM17			
69	J112-6	J201-A5	GRY	407260	41.5"	NO16			
70	J112-8	J201-A6	VIO	407260	41.5"	NC16			
71	J112-10	J201-A7	BLU	407260	41.5"	COM15			
72	J111-9	J201-A8	GRN	407260	41.5"	NO14			
73	J111-7	J201-A9	YEL	407260	41.5"	$\mathrm{NC14}$			
74	J111-5	J201-A10	ORN	407260	41.5"	COM13			
75	J111-3	J201-A11	RED	407260	41.5"	NO12			
76	J111-1	J201-A12	BRN	407260	41.5"	NC12			
77	J110-2	J201-A13	BLK	407260	41.5"	COM11			
78	J110-4	J201-A14	WHT	407260	41.5"	NO10			
79	J110-6	J201-A15	GRY	407260	41.5"	NC10			
80	J110-8	J201-A16	VIO	407260	41.5*	COM9			
81	J110-10	J201-A17	BLU	407260	41.5"	NO8			
82	J109-9	J201-A18	GRN	407260	41.5"	NC8			
83	J109-7	J201-A19	YEL	407260	41.5"	$\begin{aligned} & \text { COM7 } \\ & \text { NO6 } \\ & \hline \end{aligned}$			
84	J109-5	J201-A20	ORN	407260	41.5"				
85	J109-3	J201-A21	RED	407260	41.5"	NC6			
86	J109-1	J201-A22	BRN	407260	41.5"	COM5			
87	J108-2	J201-A23	BLK	407260	41.5"	NO4 -			
88	J108-4	J201-A24	WHT	407260	41.5"	NC4			
89	J108-6	J201-A25	GRY	407260	41.5"	COM3			
90	J108-8	J201-A26	VIO	407260	41.5"	NO2			
91	J108-10	J201-A27	BLU	407260	41.5"	$\begin{aligned} & \mathrm{NC2} \\ & \mathrm{COM} 1 \end{aligned}$			
92	J107-9	J201-A28	GRN	407260	41.5"				
93	J107-7	J201-A29	YEL	407260	41.5"	NOO			
94	J107-5	J201-A30	ORN	407260	41.5"	NC0			
95	J107-3	J201-A31	RED	407260	41.5"	NO CONNECTION CHASSIS GND			
- 96 J107-1 J201-A32 BRN ${ }^{\text {a }}$									
DOCUMENT TITLE			SIZE	CODE NO.	DOCUMENT NO.		REV		
			A	21793	407438		A		
HARNESS ASSEMBLY, 1260-37, TTI			DRN			SHEET 6 of 11			

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

[^0]: Copyright 1994 by Astronics Test Systems Inc. Printed in the United States of America. All rights reserved. This book or parts thereof may not be reproduced in any form without written permission of the publisher.

